

Associate Degree Program

Specialization	Renewable Energy Engineering
Course Number	020300111
Course Title	Electrical circuits
Credit Hours	3
Theoretical Hours	3
Practical Hours	0

Short Description:

Circuits and circuit elements. DC and AC current. Circuit variables: Voltage, Current, Energy,

جامعة البلقاء التطبيقية

Power factor, Power, Active power, Reactive power, Apparent power. Connection of circuit elements: series, parallel and compound connections. Energy sources. Basic calculations: Equivalent resistance, impedance, current, voltage, power and energy calculations.KVL, KCL, Superposition principle. Resonance. Measurements of circuit variables.

Course Objectives:

- 1. Define and study current and voltage sources.
- 2. Use Ohm and kirchoff's laws for analyzing DC electrical circuits.
- 3. Study the elements of AC circuits.
- 4. Study the RLC in AC circuits.

Detailed Description:

No.	Unit Title	Unit Content	Hours
1	Voltage, Current,	Atomic Structure, Electrical Charge, Voltage, Current,	
	and Resistance	andResistance, Voltage and Current Sources, Resistors,	6
		The Electric Circuit, DC Circuit Measurements	
2	Ohm's Law, Energy	The Relationship of Current, Voltage, and Resistance,	
	and Power	calculation of Current, Voltage and Resistance, Power	6
	aliu Fowei	and Energy, Power in an Electric Circuit, Energy	
		Conversion and Voltage	

جامعة البلغاء التطبيغية

No.	Unit Title	Unit Content	Hours
		Drop in Resistance, Power Supplies	
3	Series Circuits	Series Resistor connection, Current and voltage in a	
		Series Circuit, equivalent Series Resistance, Application	
		of Ohm's Law, Series connection of voltage Sources,	3
		Kirchhoff's Voltage Law, Voltage dividers, Power in	
		Series Circuits.	
4	Parallel Circuits	Parallel Resistor connection, Current and voltage in a	
		Parallel Circuit, Kirchhoff's Current Law, equivalent	
		Parallel Resistance, Application of Ohm's Law, Current	3
		Sources in Parallel, Current division, Power in Parallel	
		Circuits.	
5	compound Circuits	Series-ParallelResistor connection, current and voltage	
		incompound connection. Voltage Dividers with	9
		ResistiveLoads, Wheatstone Bridge, Superposition	
		Theorem	
6	Introduction to	The Sinusoidal Waveform, Sinusoidal Voltage Sources,	
	Altomotion Comment	Sinusoidal Voltage and Current	
	Alternating Current	Values, Angular Measurement of a SineWave, The Sine	
	and Voltage	Wave Formula, Analysis of AC Circuits, Superimposed	
		DC and ACVoltages, Non-sinusoidal waveforms, The	
		Oscilloscope, Introduction to Phasors, complexnumbers,	9
		rectangular and polarforms of complex numbers,	
		mathematical operations.Three-phase voltage and	
		current, Δ and Y and \square connections, Line and phase	
		voltages and currents, Power calculations in three-	
		phasecircuits, Active, reactive and apparent power, AC	
		circuit measurement	

جامعة البلقاء التطبيقية

No.	Unit Title	Unit Content	Hours
7	Capacitors	The Basic Capacitor, Types of Capacitors, Series	_
		Capacitors, Parallel Capacitors, Capacitors in DC	3
		Circuits, Capacitors in AC Circuits	
8	Inductors	The Basic Inductor, Types of Inductors, Series and	
		Parallel Inductors, Inductors in DC Circuits, Inductors in	3
		AC Circuits	
10	RLC Circuits and		
	Resonance	RC Circuits, RL Circuits, RLC Circuits, Resonance circuit	6

Teaching Methods:

- 1. Lectures
- 2. Power point presentations
- 3. Discussion

Books and references:

1. Thomas L. Floyd "principles of electric circuits", Prentice Hall, 2014, ISBN-

10: 0132383519

2. Robert L. Boylested "introductory circuit analysis" prentice-hall Inc 1997

جامعة البلقاء التطبيقية

- 3. Thomas L. Floyd "principles of electric circuits" charlese, Merrill publishing company,1981
- 4. Noel M. Morris and Frank W.Senior "electric circuits analysis" USA NY,1977

Associate Degree Program

Specialization	Renewable Energy Engineering
Course Number	020300112
Course Title	Electrical circuits lab
Credit Hours	1
Theoretical Hours	0
Practical Hours	3

جامعة البلقاء التطبيقية

Short Description:

DC and AC circuit construction and measurements. Resonance. Measuring devices

Course Objectives:

- 1. Measure voltages and currents to verify KVL and KCL.
- 2. Identify shorts and opens in a malfunctioning circuit, and define and verify theequivalent resistance of a given network
- 3. Measure the inductance of an inductor.
- 4. Measure the capacitance of a capacitor.
- 5. To be familiar with an AC oscilloscope measurement
- 6. Identify resonance circuit.

جامعة البلقاء التطبيقية

Detailed Description:

No.	Unit Title	Unit Content	Hours	
1	Resistor and color	Resistor color code, Calculation and measurements of	6	
	code	carbon resistors, tolerance and resistor range	6	
2	Series DC circuits	Series resistors, equivalent resistance measurement,	6	
		voltage and current measurement	6	
3	Series and parallel DC	parallel resistors, compound resistors, equivalent		
	circuits	resistance measurement, voltage and current	6	
		measurement		
4	Superposition	Circuits with multiple voltage sources, source canceling,	_	
	principles	voltage and current measurements.	6	
5	The Oscilloscope	Function generator and oscilloscope, frequency, time		
		period, amplitude peak, peak-to-peak and RMS values	6	
6	RLC components	Capacitor and inductor charging and discharging	6	
7	Resonant circuits	RLC resonance frequency, voltage and current		
		measurements in RLC circuits.	6	

Teaching Methods:

جامعة البلهاء التطبيهية

- 1. Practical Applications in Lab
- 3. Discussion

Books and references:

- 1. Lab sheets.
- 1. Thomas L. Floyd "principles of electric circuits" , Prentice Hall, $2014, \, \mbox{ISBN-}$

10: 0132383519

- 2. Robert L. Boylested "introductory circuit analysis" prentice-hall Inc 1997
- Thomas L. Floyd "principles of electric circuits" charlese, Merrill publishing company,1981
- 4. Noel M. Morris and Frank W.Senior "electric circuits analysis" USA NY,1977. E John Finnemore and Joseph B Franzini, Fluid Mechanics With Engineering Applications,10th Edition.

جامعة البلغاء التطبيغية

Associate Degree Program

Specialization	Renewable Energy Engineering
Course Number	020400111
Course Title	Electronic circuits and devices
Credit Hours	3
Theoretical Hours	3
Practical Hours	0

جامعة البلقاء التطبيقية

Short Description:

Semiconductor devices. Diodes: classification, characteristics and applications. Transistors:Classification, characteristics and applications. Amplifiers. Oscillators. Logic gates and Integrated circuits: Basic functions, symbols and applications. Introduction to electronic measurements: Oscilloscope applications.

Course Objectives:

Upon the completion of the course, the student will be able to:

- 1. Explain the basic structure of atoms.
- 2. Define and discuss semiconductors, conductors, insulators.
- 3. Identify the bias and applications of diode, zener, varactor, and other special diodes.
- 4. Study of BJT & FET, oscillators, and other devices
- 5. To be familiar with number systems and its conversion.
- 6. To understand logic functions, gates, and Boolean algebra.

Detailed Description:

No.	Unit Title	Unit Content	Hours
1	Introduction to Semiconductors	Atomic structure, Semiconductors, Conductors, Insulators, Covalent bonds, Conduction in semiconductors, Intrinsic and extrinsic semiconductors,	6
		N-type and p- type semiconductors	
2	The Diode	P-N junction, diode biasing, Voltage - current characteristic, DC load line, Operating point, DC and AC resistance, Comparison between silicon and germanium diodes, Data sheet of diode	9

جامعة البلقاء التطبيقية

No.	Unit Title	Unit Content	Hours
3	Special – Purpose Diode	Zener diode: symbol,structure, principle of operation. Zener diode applications: regular and limiter, Varactor diode. Light- emittingdiode (LED), photodiode	6
4	Diode Applications	Half – wave and full – wave rectifiers, Filters and regulators in power supply circuits.	3
5	Bipolar Junction Transistor (BJT)	Introduction, Structure and principle of Operation, Characteristics and parameters. Regions of operation, The DC operation point (load line), BJT as an amplifier and as switch, Voltage divider biasing and other biasing methods, common emitter, common collector and common base amplifiers, Data sheet of a BJT, junction field effect transistor (JFET). metal oxide semiconductor field effect transistor (MOSFET).	9
6	Oscillators	Introduction, Negative and positive feedback, (basic circuit, principle of operation, oscillation frequency. Phase – shift oscillator, Colpitts and Hartley oscillators	6
	Logic Gates	Introduction Decimal, binary, octal and hexadecimal numbers system, Number system conversion, Binary arithmetic, 1's and 2's complement of binary number, binary coded decimal (BCD), The inverter, AND gate, OR gate, NAND gate, NOR gate, Exclusive-OR and Exclusive-NOR gates, Application of logic gates Boolean operation and expressions, Laws and rule of Boolean algebra, De Morgan's theorem	6
7	Introduction to Electronic	Applications of oscilloscope in electronic measurements	3

جامعة البلهاء التطبيهية

No.	Unit Title	Unit Content	Hours
	Measurements		

Teaching Methods:

- 1. Lectures
- 2. Power point presentations
- 3. Discussion

Books and references:

- 1. Electronics fundamental and Experiments, Cynthia B. Leshin, David Buchla, TjomasL. Floyd, prentice hall international ,1999.
- William Kleitz, "Digital Electronics a practical approach" third edition, prentice-Hall career
 &technology Englewood Clifts, NJ., USA, 1993.
- 3. Tomas Floyd "Digital Fundamentals" sixth edition, Prentice-Hall, Inc.NJ.,USA,1997

Associate Degree Program

Specialization	Renewable Energy Engineering
Course Number	020400112
Course Title	Electronic circuits and devices lab
Credit Hours	1
Theoretical Hours	0
Practical Hours	3

Short Description:

Use of oscilloscope in measurements. Investigation of characteristics of semiconductor devices.

جامعة البلهاء التطبيهية

Construction and study of electronic circuits. Experiments in electronics have to cover the main electronic devices (diode, zener diode, diode applications, BJT, FET, op – amp, oscillator, SCR)

Course Objectives:

Upon the completion of the course, the student will be able to:

- 1. Become familiar with electronics devices and using data sheet.
- 2. Demonstrate how to test electronic devices by using AVO meter or through DCmeasurements.
- 3. Construct electronic circuit.
- 4. Investigate characteristics curves.
- 5. Calculate the value the values of currents and voltage and compare them withmeasured values

Detailed Description:

No.	Unit Title	Unit Content	Hours
1	The diode	Forward and reverse biasing. Characteristic curve. Data sheet.	6
2	Zener Diode.	Breakdown voltage. Voltage Regulation. Characteristic curve. Data sheet	6

جامعة البلهاء التطبيهية

No.	Unit Title	Unit Content	Hours
3	Rectification Circuits	Half- wave and full- wave rectifiers. Ripple factor. Line and load regulation. Filtering and Regulation	6
4	BJT Transistors	BJT testing by using AVO meter, and how to determine the specifications of transistor through data sheets, BJT biasing	6
5	BJT applications	BJT as a switch Common emitter, common base and common collector amplifier	6
6	Operational Amplifier	Inverting and Noninverting Amplifier, Differentiator and Integrator	6
7	SCR and Oscillator	SCR as a switch, RC phase-shift Oscillator	6

Teaching Methods:

- 1. Practical Applications in Lab
- 3. Discussion

Books and references:

- 1. Instructional Lab. Sheets
- 2. Thomas L. Floyd "Principles of electric circuits" Electron flow version prenticehall International eighth edition 2006.

جامعة البلهاء التطبيهية

- 3. Robert L. Boy listed Introductory circuit analysis prentice hall International 1997.
- 4. Experiments in electronics Fundamentals and electric circuits fundamentals DavidBuchla –. prentice hall 2000.

Associate Degree Program

Specialization	Renewable Energy Engineering
Course Number	. 7 . 7 . 1 10
Course Title	Fluids and Hydraulic Machines
Credit Hours	3
Theoretical Hours	3
Practical Hours	0

جامعة البلقاء التطبيقية

Short Description:

Fluid properties, fluid static's, fluid motion, continuity equation, momentum principle, energy principle, Fluid flow in pipes, pipe friction, introduction to Pumps, Types, Selection and application of pumps.

Course Objectives:

- 1- Develop competence in use of conservation laws (mass, energy, momentum) for analysis, design, selection, and operation of flow measuring devices, of open and closed water and waste water conveyance systems, and of hydraulic machines (pumps, turbines).
- 2- Utilize methods for risk and reliability analysis along with engineering economics in selecting components and systems.
- 3- Strengthen understanding of phenomena (e.g., cavitation, pressure/flow relations, losses), devices, components and systems with laboratory experiments and field trips.
- 4- Improve communication skills through report writing.
- 5- Development of dimensionally consistent equations. Competence with both SI and British Gravitational system of units.

جامعة البلقاء التطبيقية

- 6- Development of mass, momentum, and energy balance.
- 7- Application of conservation equations for pipe flow, pumping, and simple open channel flow application

Detailed Description:

No.	Unit Title	Unit Content	Hours
1	Introduction	Introduction	
		Units of measurement	
		Fluid physical properties, Density, specific	
		weight, viscosity, surface tension, compressibility	
2	Hydrostatics	fluid pressure, Pascal's law, Pressure variation in static	
		fluid, pressure head, Gage and absolute pressure	
		Pressure measurements (barometer, Manometers,	
		Piezometer, Bourdon tube Engineering applications of	
		hydrostatics	
3	Equilibrium of	Archimedes principle	
	Floating Bodies	Met center and met centric height Condition of	
		Equilibrium	

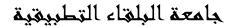
جامعة البلغاء التطبيغية

No.	Unit Title	Unit Content	Hours
		Oscillation f floating body	
4	Fluid Flow Concept	Types of flow, Laminar and turbulent flow, uniform flow,	
		steady and unsteady flow, incompressible and	
		Compressible flow Fluid energy: internal energy, Kinetic	
		energy, potential energy, pressure energy Fluid motion	
		equations: Continuity, equation of motion for steady flow,	
		Bernoulli equation and its applications Flow	
		measurement: Flow through Orifice, venture, flow over	
		notches, Pitot tube, Rota meter, discharge coefficients	
5	Flow through pipes	Types of flow in pipes, Reynolds number, boundary layer	
		and flow in pipe, loss head in pipes Darcy-Wies formula	
		of head in pipe, relation between friction coefficient and	
		Reynolds Friction loss in sudden contraction and	
		expansion Friction loss in fittings and valves Velocity	
		distributions in pipe flow, Positive displacement pumps,	
		Gear and screw pumps, Centrifugal pumps.	
		Pumps performance and characteristics curves Power	
		and efficiency calculations	

جامعة البلقاء التطبيقية

No.	Unit Title	Unit Content	Hours
6	Pumps	Types of Pumps, Principle of operation	
		Pump power and efficiency	
		Net positive section head	
		Reciprocating pumps: Construction, reducing	
		flow fluctuations	
7	Compressors	Types of Air compressors	
		Reciprocating compressors	
		Centrifugal compressors	

Teaching I	Methods:


- 1. Lectures
- 2. Power point presentations
- 3. Discussion

Books and references:

جامعة البلقاء التطبيقية

- Textbook of Hydraulics, Fluid Mechanics and Hydraulic Machines by R.S. Khurmi, Publisher: S
 Chand, New Delhi (May 1987), ISBN: 8121901626.
- 2. Franzini, Fluid Mechanics with Engineering Applications, 10th Edition, McGraw Hill, 2002.
- Giles R V et al, Schaum's Outline of Theory and Problems of Fluid Mechanics and Hydraulics", 3rd Edition, McGraw-Hill, 1994.
- 4. E John Finnemore and Joseph B Franzini, Fluid Mechanics With Engineering Applications, 10th Edition.

Associate Degree Program

Specialization

Renewable Energy Engineering

جامعة البلهاء التطبيهية

Course Number	. ۲ . ۲ . 1 1 6
Course Title	Fluids and Hydraulic machines Lab
Credit Hours	1
Theoretical Hours	0
Practical Hours	3

Short Description:

Measuring of physical properties of fluids, force on immersed plate, Jet force on plate,

Bernoullis equation, Reynolds experiments, flow through orifices, and nozzle venture friction

جامعة البلغاء التطبيغية

factor.			

Course Objectives:

At the completion of this course, each student is expected to be

able to:

- 1. Validate Bernoulli's equation.
- 2. Measure the fluid Density and viscosity.
- 3. Determine the Force of pressure on immersed plate.
- 4. Study the Energy loss and friction coefficient.
- 5. Perform Flow rate measurements (by orifice and venture).
- 6. Study the performance of Reciprocating, gear, and centrifugal pumps.
- 7. Connect pumps in series and parallel and investigate the performance of each configuration.

جامعة البلقاء التطبيقية

Detailed Description:

No.	Unit Content	Hours
1	Density and viscosity measurements	
2	Force of pressure on immersed plate	
3	Demonstrating of Bernoulli's equation	
4	Flow rate measurements (flow through 1	
	orifice and venture)	
5	Energy loss and friction coefficient 1	
	measurements	
6	Head loss in smooth and rough pipes	
7	Pipe flow, Reynolds number, laminar 1	
	and turbulent flow in pipes	
8	Flow over notches and Weirs	
9	Pump Testing in Series	
10	Reciprocating pump performance	
11	Gear pump efficiency	
12	Performance of Reciprocation air 1	

جامعة البلقاء التطبيقية

No.	Unit Content	Hours
	compressor	
13	Centrifugal Pump Testing	

Teaching Methods:

Laboratory

Specialization	Renewable Energy Engineering
Course Number	020200101
Course Title	Principles of Thermal Engineering
Credit Hours	3

جامعة البلقاء التطبيقية

Theoretical Hours	3
Practical Hours	0

جامعة البلقاء التطبيقية

Short Description:

Concepts and definitions, Properties of a pure substance, Work and heat, the first law of thermodynamics, the second law of thermodynamics, entropy, Principles of heat transfer, Steady state conduction, convection, Radiation, Heat exchangers.

Course Objectives:

- 1. To familiarize the student with basic concepts in thermodynamics and heat transfer and develop an intuitive grasp the subject matter
- 2. Develop an ability to apply these basic concepts to engineering design problems
- To provide the student with necessary analytical skills to solve various engineering problems in the field of Thermal Science, such as Power Generation, Heating, and Air conditioning

جامعة البلقاء التطبيقية

Detailed Description:

No.	Unit Title	Unit Content	Hou
			rs
1	Concepts and	Conceptsanddefinitions:System,controlvolume,prop	
	definitions	erties,stateofsubstance,processes,cycles,specificvol	
		ume,pressure,temperaturescales,zerothlawoftherm	
		odynamics,units	
2	Properties of a	Propertiesofapuresubstance:vaporliquidsolidphaseeq	
	pure substance	uilibriuminapuresubstance,equationofstate,tablesofthe	
		rmodynamicproperties.	
3	Work and heat	Workandheat:definitionandunitesofwork,workdoneatth	
		emovingboundaryofasimplecompressiblesystem,defini	
		tionandunitesofheat, relation between work and heat.	

جامعة البلغاء التطبيغية

No.	Unit Title	Unit Content	Hou
			rs
4	The first law of	The first law of thermodynamics	
	thermodynamics	:Thefirstlawforthechangeinstateofasystem,internalenerg	
		y,enthalpy,constantvolumeandpressurespecificheats,int	
		ernalenergyandenthalpyandconstantvolumeandpressur	
		especificheatsforidealgases,thefirstlawofthermodynamic	
		sforacontrolvolume,thesteadystate,steadyflowprocess.	
5	The second law of	The second law of thermodynamics: the engines and	
	thermodynamics	refrigerators, reversible process, Carnot cycle, entropy,	
		entropy change of an ideal gas, ploy tropic and	
		adiabatic reversible process.	
6	Principles of heat	Principles of heat transfer: conduction heat transfer,	
	transfer	plane wall, plane wall in series and parallel, electro	
		analog for conduction, contact resistance, thermal	
		conductivity, convection heat transfer, radiation heat	
		transfer, combined heat transfer mechanisms.	
7	Steady state	Steady state conduction: steady one-dimensional	
	conduction	conduction equation without generation in rectangular	
		coordinates, cylindrical coordinates, steady one-	
		dimensional conduction equation with generation, fins,	
		types of fins, fin efficiency, transient conduction with	
		negligible internal resistance.	
8	Radiation	Radiation: physics of radiation, black body, planks law,	
		Stefan Boltzmann law, radiation properties, kirchoff's	
		law, gray body, shape factor, radiative exchange	
		between black surfaces.	

جامعة البلغاء التطبيغية

No.	Unit Title	Unit Content	Hou
			rs
9	Heat exchangers	Heat exchangers: types, overall heat transfer coefficient,	
		the log mean temperature difference, heat exchanger	
		effectiveness.	

Teaching Methods:

- 1. Lectures
- 2. Power point presentations
- 3. Discussion

Books and references:

- 1. Y.A.Cengel,IntroductiontoThermodynamicsandHeatTransfer,Irwin/McGraw2Hill, 1997.
- Fundamentals of Engineering
 Thermodynamics,M.J.Moran,H.N.Shapiro5thEd,JohnWiley&Sons,Inc.,2004,ISB
 N:0247122747122.
- 3. J.B.JonesandG.A.Hawkins,EngineeringThermodynamics,SecondEdition,JohnWi ley& Sons,1986

Course Book:

أساسيات الديناميكا الحرارية الكلاسيكية، الطبعة الثانية ، وايلن وسونتاج، مركز الكتب الأردني

Associate Degree Program

Specialization	Renewable Energy Engineering	
Course Number	020200102	
Course Title	Principles of Thermal Engineering Lab.	
Credit Hours	1	

جامعة البلقاء التطبيقية

Theoretical Hours	0
Practical Hours	3

Short Description:

❖ Pressure–Temperature relation in the saturation region ;Compressor cycles and analyses ; Heat pump performance ; Conduction heat transfer ;Radiation heat transfer ; and Heat exchanger performance

Course Objectives:

At the completion of this course, each student is expected to be able to:

- 1. To study the relation between the Saturation Pressure- Saturation Temperature relation
- 2. To investigate the main factors affecting the heat pump performance
- 3. To study the performance of reciprocating air compressor

Detailed Description:

No.	Unit Content	weeks
1	Saturation Pressure . Saturation Temperature relation	1
2	Heat losses in Heat pump condenser Energy balance of Heat pump	1
3	Coefficient of performance of heat pump Air compressor polytropic work	2
4	Isothermal efficiency of reciprocating air compressor Volumetric	2

جامعة البلغاء التطبيغية

No.	Unit Content	
	efficiency of reciprocating air compressor longitudinal Condition	
	in simple bar	
5	Radial Condition in simple bar Conduction in composite bar	2
6	Effect of insulation on conduction heat transfer	2
7	Forced convection heat transfer	2
8	Performance of parallel and counter flow heat exchangers	2
	performance of cross flow heat exchangers	_

Teaching Methods:

Laboratory

Books and references: lab Sheets.

Specialization	Renewable Energy Engineering
Course Number	1770.7.7.
Course Title	Instrumentation and control systems
Credit Hours	2
Theoretical Hours	2
Practical Hours	0

جامعة البلغاء التطبيغية

Short Description:

Measurement and Pneumatics control, Temperature measurement and control devices, Electrical control devices, Domestic Air conditioner control circuit, Air conditioning and heating control system, Temperature control system, Heating system control system,

Course Objectives:

Upon successful completion of this course, the student should be able to:

- 1. Understand the basic concepts and components of control loop
- 2. Draw the block diagram of control system
- 3. Explain the method of temperature, pressure, flow rate, level and humidity measurements and control
- 4. Discuss the difference between the various types of control system
- 5. Understand the function of overload, relays and defrost timer

جامعة البلغاء التطبيعية

Detailed Description:

No.	Unit Title	Unit Content	Hours
1	Measurement and Pneumatics control	Testing of Measuring and Pneumatic control devices (Pressure measurements and regulators, Pneumatic relays	
2	Temperature measurement and control devices	Operation and Testing of Temperature measurement and control devices such as different types of thermostat, Different temperature measurement devices	
3	Electrical control devices	Operation and testing of Electrical control devices: electronic controller, amplifiers, electrical motors, automatic cutouts, relays, Fuses, magnetics witches	
4	Domestic Air conditioner control circuit	Control loop elements, Control loop construction Defects diagnostic in the control loop: short circuit, winding cutout, relays contact melting	

جامعة البلقاء التطبيقية

No.	Unit Title	Unit Content	Hours
5	Heating system	Control loop elements, Control loop	
	control system	construction Defects diagnostic in the	
		control loop	
6	Temperature	Control loop elements, Control loop	
	control system	construction, Open and closed loop control	
		systems, Defects diagnostic in the control loop	
7	Air conditioning and	Control loop elements,	
	heating control system	Switching between heating and	
		Air conditioning, Manual control,	
		Different types of automatic	
		control systems.	

Teaching Methods:

- 1. Lectures
- 2. Power point presentations
- 3. Discussion

Books and references:

- 1. John I. Levenhagen, HVAC Control System Design Diagrams, ISBN0207023812921.
- 2. Christopher Under wood, C.P. Underwood, HVAC Control Systems: Modelling, Analysis, and Design, ISBN0241922098028.

جامعة البلهاء التطبيهية

- John I.L evenhagen, Donald H. and Spethmann, HVAC Controls and Systems, 1st Edition, McGraw2 Hill1993, ISBN0070375097.
- 4. S. Don Swenson, HVAC Controls and Control Systems, Prentice Hall, 1994, ISBN21020130453609

Specialization	Renewable Energy Engineering
Course Number	
Course Title	Instrumentation and control systems Lab.
Credit Hours	1
Theoretical Hours	0
Practical Hours	3

جامعة البلقاء التطبيقية

Short Description:

Measuring and control elements, Temperature, pressure, flow rate and humidity measurement and control, Control system of cooling, heating and A/C processes ,Adjustment. Monitoring & troubleshooting

Course Objectives:

Upon successful completion of this course, the student should be able to:

- Conduct temperature, pressure, humidity and Air-Fuel ratio measurements and control
- 2. Test pressure regulator and Thermostat
- 3. Installation and using of overload, relays and defrost timer
- 4. Test the Solenoid Valve
- 5. Differentiate between different type of directional valves used in pneumatic control systems

جامعة البلهاء التطبيهية

Detailed Description:

No.	Unit Content	Hours
1	Pressure measurements	
2	Pressure regulators	
3	Temperature measurements Thermostat	
4	Flow rate measurement and control humidity	
	measurement and control	
5	Electricalcontrollingelements(Relay,overload,contractor)E	
	xpansionDevice	
6	Temperature and pressure controllers	
7	Three way controllers	
8	Air ventilation and air conditioning control system	
9	Solenoid Valve Controller	

Teaching Methods:

Laboratory

Books and references: lab Sheets

Specialization	Renewable Energy Engineering
Course Number	.7.7.0701
Course Title	Bio energy
Credit Hours	2
Theoretical Hours	2
Practical Hours	0

جامعة البلهاء التطبيهية

Short Description:

This course present a knowlgment of the basic of bioenergy, where the bioenergy is a form of renewable energy derived from biomass to generate biofuel, heat and electricity.

Course Objectives:

- 1: Identify bio energy sources and the students should be able to know how to classified these sources upon the their energy.
- 2: Students should be understood stages of biomass treatment and biofuel production
- 3: knowing the conversion process to convert biomass and waste to biofuel.
- 4: identify the biofuel types and the main sources for each specific type

جامعة البلقاء التطبيقية

Detailed Description:

No.	Unit Title	Unit Content	Hours
1	Introduction to	Identify the main sources of traditional	3
	energy and	energy, bioenergy concept	
	bioenrgy		
2	Bioenergy sources	Organic material energy, solar energy	3
		and crops field	
3	Biomass to biofuels	Wood energy, waste energy and	3
		microalgae energy	
4	Improving biomass	Food security, biomass treatment,	6
	energy	increasing crops field to increase biofuel	
5	Waste to energy	MW, OFMW, sewage sludge	9
		characteristics. Implementation of waste	
		to produce biofuel, Evaluate the energy	
		of substances through appling different	
		method	
6	Main conversion	Thermal process, gasification, pyrolysis	12
	process	and anaerobic digestion process	

Teaching M	lethods:
------------	----------

Books and references:

_

Specialization	Renewable Energy Engineering
Course Number	.7.7.0171
Course Title	Thermal Solar Energy
Credit Hours	3
Theoretical Hours	3
Practical Hours	0

جامعة البلقاء التطبيقية

Short Description:

Basics of thermal solar radiation, available solar energy, thermal solar heating/cooling deign and control, passive and active solar systems, solar ventilation, solar water heating systems, solar collectors, concentrated solar collector, solar pumps.

Course Objectives:

This course aims to introduce students to the basics and concepts of thermal solar energy and its various applications in water heating, heating, cooling, and ventilation of buildings.

جامعة البلقاء التطبيقية

Detailed Description:

No.	Unit Title	Unit Content	Hours
1	The basics of solar thermal radiation	Solar thermal radiation	
2	Thermal solar water heating systems	-Passive solar water heatingActive solar water heating	
3	Thermal solar heating systems	-Passive thermal solar heating systemsActive thermal solar heating systems	
4	Thermal solar cooling systems	-Passive thermal solar cooling systemsActive thermal solar cooling systems	
5	Solar thermal power plants	Components, work principles, types.	
6	Solar pumps and solar energy control devices	-Solar pumping and solar pumpsSolar control devices	

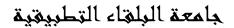
Teaching methods:

- ✓ Lectures: Three hours-lectures- per week will be given to students.
- ✓ Demonstration

جامعة البلقاء التطبيقية

- √ Tutorials
- ✓ Case Study: Some practical case studies will be given during the course.

Learning Out comes:


- 1. Knowledge and understanding: This could be tested throughout exams and discussion in the class.
- 2. Intellectual skills: During the course many oral quizzes and discussions may take place.
- 3. Subject specific skills: Every topic in this course is a specific skill in analyzing solar engineering system.
- 4. Transferable skills: This includes instructors teaching, working and research experiences.

Books and references:

Textbook: Soteris Kalogirou, "Solar Energy Engineering: Processes and Systems", 1st edition, 2009.

References:

- 1. J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes", Wiley-Interscience; 2nd edition.
- 2. Frank Kerth, Jan F. Kreider, "Principles of Solar Engineering", 1978.
- " مبادىء الطاقة الشمسية و تطبيقاتها" ، د. سهيل فاضل و د. الياس الكبه. 3.
- " مقدمة في الطاقة الشمسية" ، سول وايدر 4.

Specialization	Renewable Energy Engineering
Course Number	7710.7.7.
Course Title	Thermal Solar Energy Workshop
Credit Hours	
Theoretical Hours	
Practical Hours	

جامعة البلهاء التطبيهية

Short Description:

The sun's rays and thermal devices, conversion of radiant energy, measurement of solar radiation. Solar collectors, the efficiency of solar collectors. Effect of shading, temperature, and the dust on the performance of solar thermal collectors. The sun's rays and optical devices, conversion of radiant energy.

Course Objectives:

This course aims to introduce students to the basics and concepts of thermal solar energy devices, installations, and its various applications.

Detailed Description:

No.	Unit Title	Unit Content	Hours
1	Trainning on health and		
	safety workshop tools		
2	Training on solar		
	measurements tool s		
3	Solar collectors	Breif description to solar	
		collectors -types, installations.	
4	Connection of solar	-Parallel connection	
	collectors	-Series connection	
5	Water solar heating	- open cycle system	
	system installation	- closed cycle system	
6	Evacuated tube solar		
	collector installation an		
	inspection		
7	Integrated solar collector		
	installation an inspection		

Teaching methods:

- ✓ Lectures: Three hours-training workshop- per week will be given to students.
- ✓ Demonstration
- ✓ Tutorials
- ✓ Case Study: Some practical case studies will be given during the course.

Learning Out comes:

5. Knowledge and understanding: This could be tested throughout exams and discussion in workshop.

جامعة البلقاء التطبيقية

- 6. Intellectual skills: During the workshop course many oral quizzes and discussions may take place.
- 7. Subject specific skills: Every topic in this course is a specific skill in analyzing solar engineering system.
- 8. Transferable skills: This includes instructors teaching, working and research experiences.

Books and references:

Textbook: Soteris Kalogirou, "Solar Energy Engineering: Processes and Systems", 1st edition, 2009.

References:

- 5. J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes", Wiley-Interscience; 2nd edition.
- 6. Frank Kerth, Jan F. Kreider, "Principles of Solar Engineering", 1978.
- " مبادىء الطاقة الشمسية و تطبيقاتها" ، د. سهيل فاضل و د. الياس الكبه. " 7.
- " مقدمة في الطاقة الشمسية" ، سول وايدر . 8

Specialization	Renewable Energy Engineering
Course Number	. 7 . 7 . 0 7 0 7
Course Title	Bio energy and Geothermal Energy LAB
Credit Hours	1
Theoretical Hours	0
Practical Hours	3

جامعة البلقاء التطبيقية

Short Description:

learning the ISO process of international sampling method, identify the pH value, fixed carbon, volatile sold and humidity of different material especially of organic substances.knowing pyrolysis process and applying it through TGA analyser, also studying the relationship between temperature and the heat rate. identify the C, H & N value through CHN analysier and it energy through calorimeter.

Course Objectives:

- 1: learning how to make sampling according to ISO methods. Students should be able to know suitable method to sample of solid material, liquid and gas material.
- 2: Understanding and applied suitable process for main analysis such as PH value and how to calibrate Hanna meter.
- 3: knowing and identify by the students how to use TGA analyzer, in order to fined different essential value and how the pyrolysis process can be carried out through TGA. Also how to calculate energy and C, H and N through different methods

جامعة البلغاء التطبيعية

Detailed Description:

No.	Unit Title	Unit Content	Hours
1	1	Applied and studing ISO sampling	3
		methods,	
2	2	general analysis of the substances	3
		(eg:temperature, pH value,)	
3	3	Thermogravimetric analysis (measuring	3
		the humidity ratio, Fixed carbon,)	
4	4	Thermogravimetric analysis (viscosityand	3
		volatile solid)	
5	5	Evaluate the energy of substances	3
		through applingpyrolsis process by TGA	
		(1)	
6	6	Evaluate the energy of substances	3
		through applingpyrolsis process by TGA	
		(2)	
7	7	Calculate the value of carbon, hydrogen	3
		and nitrogen through CHN analysers(1)	
8	8	Calculate the value of carbon, hydrogen	3
		and nitrogen through CHN analyser (2)	
9	9	Measuring the values of HHV and LHV	3
		of different materiales	
10	10	identify the component of the digester	3
		and the biogas production process	
11	11	Project 1	9

جامعة البلغاء التطبيغية

Teaching Methods:		
Books and references:		

Specialization	Renewable Energy Engineering
Course Number	.7.7.0771
Course Title	photovoltic solar systems
Credit Hours	3
Theoretical Hours	3
Practical Hours	0

جامعة البلقاء التطبيقية

Short Description:

Recognizing the basic of PV operation, PV manufacturing, how to produce the current through n-p type of silicon in both mono and poly silicon crystalline. energy concepts and its use, available solar radiation energy, solar cell types and solar cell technologies, parameters of solar cells, factors affecting electricity generated by PV, PV power curve and efficiency, charge controller concepts, inverter of PV system basics, calculation maximum power point, shadow effects, PV models..

Course Objectives:

- 1: Identify cell, module and array and the component of PV net work
- A: Students should be able to know and identify solar system, PV types
- B: Students should be understood stages of electricity production stages through n-p type.
 - 2: calculate power, current and voltage of the solar system with different factors.
- A: Students should be learning how to calculate the power, voltage and
- B: Students should be learning how to identify the perfect factors for high efficiency.
 - 3: Describe the principles of basic of charge controller and inverter use in the solar PV system.

جامعة البلقاء التطبيقية

A: identifies the charge controller required for different PV system technologies
B: students should identify the inverter types and its efficiency required

جامعة البلقاء التطبيقية

Detailed Description:

No.	Unit Title	Unit Content	Hours
1	Introduction topv	Introduction to energy and solar	6
	systems	Photovoltaic energy, n-p type of silicon,	
		PV contents, Photovoltaic Solar Cell	
		Types and Technologies, .	
2	PV parameters	Measurements of electrical current	6
		quantities, voltage and power of DC,	
		estimate PV energy requirement, Solar	
		cell technologies, parameters of PV,	
		The Solar Photovoltaic Array	
3	Technical efficiency	Curve of Power, current and voltage	6
		produced by PV system and the	
		maximum power point.	
4	Component of PV	Basic of charge controller and	6
	network and	inverter, calculate the dimensions and	
	modelling	length of connection cables use in PV	
		system	
5	Effects of PV	Monocrystalline silicon cells, Crystalline	6
	technology types	silicon cell technology, Multicrystalline	
		silicon cells, Amorphous silicon cells,	
		Other types of cells	
6	Critical factors	Module temperature, the atmospheric	6
	affectinefficiency of	parameters, shadow, technology	
	Maximum power	parameter	

جامعة البلقاء التطبيقية

Teaching Methods:

Books and references:

Solar Photovoltaic Basics, 1st edition, Earthscan. 2015 New York-Sean White.

 Solar Electricity Handbook: 11th Edition: A simple, practical guide to solar energy designing and installing solar photovoltaic systems. Michael Boxwell, 2017 Green stream.

Specialization	Renewable Energy Engineering
Course Number	. 7 . 7 . 0 7 7 7
Course Title	photovoltic solar systems workshop
Credit Hours	2
Theoretical Hours	0
Practical Hours	6

جامعة البلقاء التطبيقية

Short Description:

Study of Cells, Modules, & Arrays, identify PV system type, evaluat PV network in series and in parallele, study the shading effect, calculate maximum power point, measuring current and voltage curve,

Course Objectives:

- 1: Identify cell, module and array and the component of PV net work
- A: Students should be able to know and identify solar system, PV types
- B: Students should be understood stages of electricity production stages through n-p type.
 - 2: calculate power, current and voltage of the solar system with different factors.
- A: Students should be learning how to calculate the power, voltage and
- B: Students should be learning how to identify the perfect factors for high efficiency.
 - 3: Describe the principles of basic of charge controller and inverter use in the solar PV system.

A: identifies the charge controller required for different PV system technologies

B: students should identify the inverter types and its efficiency required

جامعة البلقاء التطبيقية

Detailed Description:

No.	Unit Title	Unit Content	Hours
1	1	Studing of cell Modules and array,	3
		identify type of module :mono-Si, poly-	
		Si & thin film	
2	2	Calculate voltage of open circuit and	3
		current of close circuit and calculate	
		power produced by PV system	
3	3	Shading effect on the performance of pv	3
		modules	
4	4	Calculating maximum instantaneous	3
		power of a PV module under direct	
		sunlight	
5	5	Measuring IV curve for a PV module	3
		under direct sunlight	
6	6	Evaluate the performance for gride	3
		connected pv systems, using inverter,	
		CC the type of battary	
7	7	Studing the PV traking system	3
8	8	Studing the pathfinder works	3
9	9	Project 1	6
10	9	Project 2	6

Teaching Methods:

Books and references:

Specialization	Renewable energy engineering
Course Number	. ۲ . ۲ . 0 ۲ ۳ ۱
Course Title	Wind Energy
Credit Hours	3
Theoretical Hours	3
Practical Hours	0

جامعة البلقاء التطبيقية

Short Description:

الرياح نوعية و سرعة قياس و تحليل الرياح، طاقة مبادئ الرياح نوعية و سرعة قياس و تحليل الرياح، طاقة مبادئ الشبكة كهرباء وتوليد الطاقة إمدادات المياه ضخ آلات الرياح طاقة محولات من مختلفة أنواع وتشغيل تصميم ، النائية المناطق في بيانات الرياح وتحليل و التصميم .النائية المناطق في الرياح مولدات من الناتج تقدير .

Principles of wind energy; analysis and measurements of wind energy characteristics, wind resources assessment

The design and operation of different types of wind energy converters. Machines for water pumping; remote area power supply and grid electricity generation. Design and economic analysis of wind energy converters; including site selection; monitoring and analysis of wind data; estimating output from wind generators and their integration into hybrid power systems or the grid.

Course Objectives:

- Understand the origin and development of windmills and wind turbines.
- Understand the first attempts of electrical power generation from wind
- Understand the main components of wind energy system and its functions
- Understand the equations used to convert the air kinetic energy into mechanical energy
- Able to know the different types of wind turbines
- Understand rotor aerodynamics

جامعة البلغاء التطبيغية

Detailed Description:

No	Unit Title	Unit Content	Hours
1	Wind energy today	- Advantages	6
		- Disadvantages	
2	Wind: origin and	- Origin and global availability	9
	local effect	- Local effects on wind flow	
		- Selecting a turbine site.	
3	Physics of wind	- Energy content in wind	9
	energy	- Energy conversion at the blade	
		- Power coefficient and principles	
		of design	
4	Component of a wind	- Rotor blades	9
	energy convertor	- Gear boxes	
		- Generators	
		- Towers	
5	Design	- Rotor area of turbines	9

جامعة البلقاء التطبيقية

No	Unit Title	Unit Content	Hours
	considerations	- Number of blades	
		Horizontal or vertical axis turbines	
		turbines	

Teaching Methods:

The methods of instruction may include:

- 1. Lectures
- 2. Discussion and problem solving
- 3. Individual assignments
- 4. Any active learning method such as: small group.

Books and references:

- J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind Energy Explained –Theory, Design, and Applications, John Wiley & Sons, 2010, ISBN: 978-0-470-01500-1.
- -1. Sathyajith Mathew, Wind Energy Fundamentals, Resource Analysis and Economics, Springer, 2006, ISBN 3540309055
- -2. T. Burton, N. Jenkins, D. Sharpe and Ervin Bossanyi, Wind Energy Handbook, second edition, John Wiley & Sons, Ltd, 2011, ISBN: 978-0-470-69975-1
- -3. Wind turbines: fundamentals, technologies, application, economics. By Erich Hau.

Specialization	Renewable energy engineering
Course Number	٠٢٠٢٠٥٢٤١
Course Title	Geothermal Energy
Credit Hours	2
Theoretical Hours	2
Practical Hours	0

جامعة البلقاء التطبيقية

Short Description:

مقدمة في مصادر الطاقة الجوفية . مناقشة الية انتقال الحرارة . دراسة أنظمة التبادل الحراري المختلفة . تطبيقات الديناميكا الحرارية في التحليل والتصميم والتحكم لأنظمة التدفئة والتبريد .

Introduction in geothermal energy sources. The mechanism of heat transfer. Study the different heat exchange systems. Applications of thermodynamics in the analysis, design and control of heating and cooling systems.

Course Objectives:

- Understand geothermal resources
- Deals with heat transfer mechanisms
- Use different heat exchange systems
- Be able to understand thermodynamics applications in analysis, design and control heating

Detailed Description:

No.	Unit Title	Unit Content	Hours
1	Basics	What is geothermal energyDifferent ways in using geothermal energy	3

جامعة البلغاء التطبيغية

No.	Unit Title	Unit Content	Hours
2	Current use	 Homes uses geothermal power plant Geothermal electricity current supplied 	6
3	different heat exchange systems	 Types of heat exchangers Applications of heat exchangers using geothermal system 	9
4	thermodynamics applications analysis, design and control heating and cooling systems	 Heating uses Geothermal Heat pumps Flash Power Plant Dry steam power plant Binary power plant 	9
5	Environment	 How Geothermal energy consider to be renewable How do Geothermal energy compare to fossil fuel How Geothermal energy impacted the environmental 	9
6	Power plant Costs	- Cost of geothermal power	6

جامعة البلهاء التطبيهية

No.	Unit Title	Unit Content	Hours
		plant	
		Factors influence the cost of - geothermal power plant - How does the cost of Geothermal energy compare to the cost of fossil fuel	

Teaching Methods:

The methods of instruction may include:

- 5. Lectures
- 6. Discussion and problem solving
- 7. Individual assignments
- 8. Any active learning method such as: small group.

Books and references:

-Geothermal Energy: Sustainable Heating and Cooling Using the Ground 1st Edition , by Marc A. Rosen (Author), Seama Koohi-Fayegh

Specialization	Renewable energy engineering
Course Number	.7.7.0772
Course Title	Wind Energy lab
Credit Hours	1
Theoretical Hours	0
Practical Hours	3

جامعة البلقاء التطبيقية

Short Description:

- أساسيات الخصائص الهوائية من الرياح؛ التصرف الديناميكي لمتحركات توربينات الرياح و الطاقة المتولدة، اجهزة تحليل و قياس سرعة و نوعية الرياح.
- مقدمة في مصادر الطاقة الجوفية وطرق انتقال الحرارة، دراسة أنظمة التبادل الحراري المختلفة . تطبيقات الديناميكا الحرارية في أنظمة التدفئة والتبريد.
 - The basics of aerodynamic characteristics of wind; dynamic behavior of wind turbine rotors and the generated wind energy, wind energy measurements.
 - Introduction in heat transfer mechanisms, geothermal resources, heat exchange systems.

Course Objectives:

- To be familiar with wind energy
- Understand the main components of wind energy system and its functions
- Able to know the different types of wind turbines
- To be familiar with wind energy components system

Detailed Description:

No.	Unit Title	Hours
1	Wind energy system (rotor blades, the tower,	
	Mechanical Drive, Electrical System, etc.)	
2	Basic concepts of wind energy Converters	
	(turbines)	
3	applications of wind energy	
4	Wind Spectra and meteorology	
5	Electrical Power from the Wind	
6	Aerodynamics of turbines	
7	geothermal resources	
8	Introduction into heat transfer mechanisms	

Teaching Methods:

The methods of instruction may include:

- 9. Laboratory notes and manual
- 10. Any active learning method such as: small group.

Books and references:

- J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind Energy Explained –Theory, Design, and Applications, John Wiley & Sons, 2010, ISBN: 978-0-470-01500-1.
- -Geothermal Energy: Sustainable Heating and Cooling Using the Ground 1st Edition , by Marc A. Rosen (Author), Seama Koohi-Fayegh

جامعة البلغاء التطبيغية